Krüppel-like transcription factors KLF1 and KLF2 have unique and coordinate roles in regulating embryonic erythroid precursor maturation.

نویسندگان

  • Divya S Vinjamur
  • Kristen J Wade
  • Safa F Mohamad
  • Jack L Haar
  • Stephen T Sawyer
  • Joyce A Lloyd
چکیده

The Krüppel-like transcription factors KLF1 and KLF2 are essential for embryonic erythropoiesis. They can partially compensate for each other during mouse development, and coordinately regulate numerous erythroid genes, including the β-like globins. Simultaneous ablation of KLF1 and KLF2 results in earlier embryonic lethality and severe anemia. In this study, we determine that this anemia is caused by a paucity of blood cells, and exacerbated by diminished β-like globin gene expression. The anemia phenotype is dose-dependent, and, interestingly, can be ameliorated by a single copy of the KLF2, but not the KLF1 gene. The roles of KLF1 and KLF2 in maintaining normal peripheral blood cell numbers and globin mRNA amounts are erythroid cell-specific. Mechanistic studies led to the discovery that KLF2 has an essential function in erythroid precursor maintenance. KLF1 can partially compensate for KLF2 in this role, but is uniquely crucial for erythroid precursor proliferation through its regulation of G1- to S-phase cell cycle transition. A more drastic impairment of primitive erythroid colony formation from embryonic progenitor cells occurs with simultaneous loss of KLF1 and KLF2 than with loss of a single factor. KLF1 and KLF2 coordinately regulate several proliferation-associated genes, including Foxm1. Differential expression of FoxM1, in particular, correlates with the observed KLF1 and KLF2 gene dosage effects on anemia. Furthermore, KLF1 binds to the FoxM1 gene promoter in blood cells. Thus KLF1 and KLF2 coordinately regulate embryonic erythroid precursor maturation through the regulation of multiple homeostasis-associated genes, and KLF2 has a novel and essential role in this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis.

The Krüppel-like C2/H2 zinc finger transcription factors (KLFs) control development and differentiation. Erythroid Krüppel-like factor (EKLF or KLF1) regulates adult beta-globin gene expression and is necessary for normal definitive erythropoiesis. KLF2 is required for normal embryonic Ey- and betah1-, but not adult betaglobin, gene expression in mice. Both EKLF and KLF2 play roles in primitive...

متن کامل

KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic beta-like globin genes in vivo.

The Krüppel-like factors (KLFs) are a family of C2/H2 zinc finger DNA-binding proteins that are important in controlling developmental programs. Erythroid Krüppel-like factor (EKLF or KLF1) positively regulates the beta-globin gene in definitive erythroid cells. KLF2 (LKLF) is closely related to EKLF and is expressed in erythroid cells. KLF2-/- mice die between embryonic day 12.5 (E12.5) and E1...

متن کامل

Regulation of Delta-Aminolevulinic Acid Dehydratase by Krüppel-Like Factor 1

Krüppel-like factor 1(KLF1) is a hematopoietic-specific zinc finger transcription factor essential for erythroid gene expression. In concert with the transacting factor GATA1, KLF1 modulates the coordinate expression of the genes encoding the multi-enzyme heme biosynthetic pathway during erythroid differentiation. To explore the mechanisms underpinning KLF1 action at the gene loci regulating th...

متن کامل

The multifunctional role of EKLF/KLF1 during erythropoiesis.

The cellular events that lead to terminal erythroid differentiation rely on the controlled interplay of extra- and intracellular regulatory factors. Their downstream effects are highly coordinated and result in the structural/morphologic and metabolic changes that uniquely characterize a maturing red blood cell. Erythroid Krüppel-like factor (EKLF/KLF1) is one of a very small number of intrinsi...

متن کامل

Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming

Pluripotency is maintained in mouse embryonic stem (ES) cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf fami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Haematologica

دوره 99 10  شماره 

صفحات  -

تاریخ انتشار 2014